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A robust and reproducible model was developed to
predict the sensory profile of espresso coffee from instru-
mental headspace data. The model is derived from 11
different espresso coffees and validated using 8 additional
espressos. The input of the model consists of (i) sensory
profiles from a trained panel and (ii) on-line proton-
transfer reaction mass spectrometry (PTR-MS) data. The
experimental PTR-MS conditions were designed to simu-
late those for the sensory evaluation. Sixteen characteristic
ion traces in the headspace were quantified by PTR-MS,
requiring only 2 min of headspace measurement per
espresso. The correlation is based on a knowledge-based
standardization and normalization of both datasets that
selectively extracts differences in the quality of samples,
while reducing the impact of variations on the overall
intensity of coffees. This work represents a significant
progress in terms of correlation of sensory with instru-
mental results exemplified on coffee.

The perception elicited from drinking a freshly prepared
espresso coffee represents a complex scientific phenomenon.1,2

This multisensory experience involves all our senses such as
olfaction, taste, texture, trigeminal, and visual sensation. Further-
more emotions and cognitive processes constructed during
drinking experiences, such as interactions between senses3 and
product familiarity,4 modulate perception. Among the various
sensory modalities, the aroma (smell) and taste, often referred
to as flavor, are of paramount importance to the quality of coffee.
The flavor compounds in a roast and ground (R&G) coffee depend
on many factors, two of which are of particular importance. First,
the green coffee variety and quality with its specific composition
on precursors sets the stage for the later flavor development
during roasting. Second, the roasting process which unlocks the

flavor potential of the green coffee beans and creates the coffee
flavor so much appreciated by coffee aficionados all over the world.
Changes in these two factors affect most of the flavor compounds.

Trained sensory panelists are capable to characterize subtle
differences between espresso coffees. The set of sensory descrip-
tors that are employed by a coffee sensory specialist are generally
adjusted to the type of coffee being evaluated and pertain either
to green coffee tasting, the two commercial coffee varieties being
Robusta (species Coffea canephora) and Arabica (species Coffea
arabica), or to finished product tasting such a specific espresso
blend from a coffee roaster.

Besides sensory analysis, coffee scientists have long been
searching for instrumental approaches to complement and eventu-
ally replace human sensory profiling. Yet, the prediction of sensory
profiles on the basis of instrumental data (e.g., PTR-MS) has
remained a challenge that still waits to be resolved.5-8 Most
attempts to relate aroma perception to analytical measurements
probably failed because one was trying to establish a too direct
relationship between the two datasets that are fundamentally
different in nature. Indeed, (i) a sensory profile reflects relations
among a set of attributes measured on a relative scale with respect
to references, while the choice of attributes and references is to
some degree arbitrary. It is primarily influenced by differences
in the sensory qualities of samples (i.e., the relative composition)
rather than from the absolute intensity of physical stimuli (i.e.,
absolute quantities/concentrations). (ii) In contrast, analytical
measurements (e.g., ion trace profiles in PTR-MS) mainly reflect
information about absolute concentrations of individual constitu-
ents, essentially independent of variations from other constituents
(PTR-MS ion signal) or from other samples.

In order to correlate sensory and instrumental datasets, it is
important to apply a knowledge-based standardization and nor-
malization procedure to both datasets that selectively filters out
mutually relevant information.

Considerable work has been devoted in the last 20 years to
the characterization and quantification of aroma-active compounds
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in coffee as well as to their interactions. In parallel, many sensory
profiling methods have been developed to describe the rich aroma
profile of coffee and to identify sensory relevant compounds by
chemical analysis.6 Roasted coffee aroma is composed of more
than 1000 volatile organic compounds (VOC).9 Since the applica-
tion of gas chromatography coupled with olfactometry (GC-O) as
a screening tool in aroma analysis, it is known that only about 50
volatile compounds contribute to the overall sensory mapping of
coffee aroma and even less need to be taken into account to
characterize and reproduce quite accurately a coffee aroma.10

These are present in a subtle ratio to provide a balanced coffee
aroma. Consequently, most of the VOC in the headspace of coffee
have probably no aroma contribution or a threshold too high to
be perceived by humans.11-13

To measure the headspace concentration of these compounds
on-line with a high reproducibility, a mass spectrometer is needed
with low fragmentation, high time resolution, and broad linear
detection range. Among others a PTR-MS-type gas analyzer fulfils
these demands. Furthermore the development of a “hot liquid
headspace inlet system” was necessary to analyze the aroma
compounds released from espresso coffee (headspace) in a
reproducible way. The coupling of a commercial GC/MS (electron
impact, EI, ionization) with PTR-MS (chemical ionization) finally
allows for achieving an unambiguous identification and builds the
bridge between molecular information and on-line marker based
headspace data, applicable to complex food systems.14

This study is aiming to give an answer to a fundamental
question of flavor science: “Can we predict the sensory profiles
of coffee by a fast (high-throughput) on-line analytical measure-
ment?” Or more colloquially “Can a machine taste coffee?”

We demonstrate that this is indeed possible, provided that both
analytical and sensory datasets are properly standardized and
normalized with respect to each other, in order to selectively
extract the mutually relevant “quality” information.

TECHNICAL SECTION
A standard espresso machine (TURMIX C250, Zurich, Swit-

zerland) was used for the preparation of espresso coffee. Extrac-
tion time, quantity, and temperature were kept stable for all
instrumental measurements and the sensory evaluation. For the
development of the model 11 espresso coffees (“Ristretto”-type)
were used (training set). Subsequently the model was tested on
a set of eight different espresso coffees (validation set) where five
of them were “Ristretto”-types and three of them “Lungo”-types.
The coffees were extracted with 25 mL of water (“Ristretto”-type)
and with 110 mL (“Lungo”-type) of water (Vittel) as these are the
recommended extraction volumes for these espressos. The
extraction time was limited to 20 ( 2 s for the “Ristretto”-type

and 40 ( 4 s for the “Lungo”-type. Samples exceeding these limits
were excluded from further analysis.

Instrumental Analysis. A double-jacketed, water-heated sample
cell (350 mL glass vessel) was mounted inside an oven set to 65
°C with active air circulation (Figure 1). A temperature stabilized
water bath (set to 50 °C) was connected to the double-jacketed
cell to keep the sample at constant temperature. The sample cell
was connected to the fix-mounted top cover to be easily discon-
nected and filled with the coffee sample. The coffee headspace
was purged continuously with 300 standard cubic centimeters per
minutes (sccm) through heated tubes (80 °C) penetrating the fix-
mounted top of the cell. Before analyzing by PTR-MS, the sample
gas was diluted with 3000 sccm dry air preventing saturation of
the instrument. Lindinger et al.14 have described the complete
setup in detail. After preparation of the coffee sample, the
headspace vessel was disconnected, filled with the coffee sample,
and connected back to the system. This procedure was carried
out quickly (less than 10 s) to avoid temperature changes of the
sample, oven, and headspace vessel. PTR-MS instrumental pa-
rameters were set as following: drift tube pressure, 2 mbar; drift
tube temperature, 80 °C; drift voltage, 550 V; extraction blend, 6
V.

As we were aiming at a high-throughput experimental solution,
it was important to first reduce the instrumental data to include
only the most relevant information. This concerns the measure-
ment time period per sample as well as the specific ion traces to
be included.

First, scans of the ion trace intensities over the mass range
from m/z 20 to m/z 250 were performed for 30 min after
connecting the sample to the analytical setup. The maximum ion
trace intensities in the headspace were measured 2 min after
connecting the sample cell to the PTR-MS. From there on, and
for all subsequent measurements, only these maximum concentra-
tion values were used for the data treatment, and the total
measurement time was reduced to 3 min.

Second, statistical data analysis of all coffee samples measured
with three repetitions allowed selecting 16 most discriminating
ion traces out of 230, as listed in Table 1. This was based on the
F ratio of the one way analysis of variance (ANOVA). This reduced
data set of 16 ion traces was used for further statistical analyses
and correlation. This reduction of the analytical data to a limited,
most significant fraction was crucial to achieve a reproducible and
robust correlation with the sensory data.

It is also important to point out that the chemical identity of
the 16 ion traces is not relevant for this study, and in particular
the correlation is not based on a set of identified key aroma
compounds. Most of the odor active compounds in coffee are
indeed known and can be analyzed and quantified with modern
instrumental techniques. Yet, the aim of this work was to
demonstrate the applicability of a data-driven method rather than
a targeted chemical study. Furthermore, by applying a fast on-
line technique, we were aiming at developing a high throughput
solution. It is interesting that some of the 16 ion traces selected
in our holistic approach do indeed, at least partially, represent
well-known coffee aroma compounds, such as isobutanal, 3- and
2-methylbutanal, 2,3-butanedione, and 2,3-pentanedione, for ex-
ample.
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However, the combination of off-line coupled GC/MS/PTR-
MS and on-line PTR-MS permit us to achieve both a targeted
chemical analysis as well as a high throughput study.14 The
ionization process in PTR-MS (chemical ionization) is relatively
soft. Nevertheless, 90% of the identified molecules suffer from
some fragmentation, and each of the 16 recorded ion traces
represents the sum of more than one chemical compound
(including fragments) at different concentrations. Table 1 shows
the list of compounds representing 95% of the ion trace signal.
As an example, the ion trace at m/z 57 represents more than 95%
acetol while m/z 81 represents the presence of pyridine, pyrazine,
2-furfuryl formate, 2-furfuryl acetate, and 2-furfurylalcohol in a
relative abundance.

Sensory Analysis. The sensory evaluation was performed by
an experienced 10-member coffee panel. Even though the panel
was already trained with the glossary and products, four training
sessions were organized to select the appropriate sensory at-
tributes. During training, two or three references were presented
for each attribute (weak, medium, and high intensity). Tasters
were asked to rank and score the intensity level. Prior to the final
evaluation in sensory booths, the performance of the panel and
consensus between individual tasters was checked.

Two performance indices were used, i.e., discrimination ability
of the panel and individual performance of assessors. The
discrimination ability was tested for each attribute, using a two-
way ANOVA with the product as fixed and the assessor as a
random factor. The F-ratio of the product effect served as marker
of the discrimination ability. The individual performance of an
assessor on a single attribute consisted of the individual discrimi-

nation ability and the ability to be consensual with the other
assessors of the panel.15

The individual discrimination ability was tested using a one-
way ANOVA with product as a fixed factor. The assessor was
considered as able to discriminate products whenever the F-ratio
was larger than 2.5 (8 products evaluated twice). Discrimination
ability also implies repeatability of the assessor. The consensus
ability was tested by calculating the correlation coefficient between
individual product means and the product means of the rest of
the panel. An assessor was judged consensual whenever this
correlation coefficient was larger than 0.6 (8 products, p-value )
0.1).

The Quantitative Descriptive Analysis16 method with the
monadic approach was applied for performing the sensory evalu-
ation of the coffees, i.e., samples were presented one by one. Each
assessor scored the product based on the knowledge and
consensus acquired during the training sessions. The samples
were presented using a balanced presentation design, which was
repeated twice. The products were evaluated in booths using a
scale ranging from 0 (not intense) to 10 (very intense).

Mathematical Data Treatment. Standard statistical methods
(ANOVA) were used to describe the discrimination of the
products by sensory analysis. From this, the quality of the
predicting model based on instrumental data was evaluated.
In addition, a validation using different samples was performed

(15) Labbe, D.; Rytz, A.; Morgenegg, C.; Ali, S.; Martin, N. Chem. Sens. 2007,
32, 205-214.

(16) Stone, H.; Sidel, J. L. Sensory Evaluation Practices; Academic Press: London,
U.K., 1993.

Figure 1. Schematic presentation of the experimental setup with on-line sampling of coffee headspace using a dynamic headspace cell.
Examples of the obtained time intensity profiles for three different espressos are shown on the right side.
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and tested by comparing the LSD obtained from the sensory
evaluation (validation set) and the difference between the pre-
dicted and evaluated data for each sensory attribute and each
product. The predata-processing of the raw data is described in
Table 2A,B. Standard matrix transformations are applied. Principal
component regression (PCR) was applied to obtain the matrix
transforming the instrumental data into predicted sensory data.
The approach is described in detail using standard mathematics
NCSS 2007 (Hintze, J. NCSS, PASS, and GESS; NCSS: Kaysville,
Utah, 2006) and Excel (Microsoft) was used to do the calculations
presented in this work.

DEVELOPING THE SENSORY PREDICTIVE MODEL
In a first part of the study, 11 espresso coffees (training set)

of distinct sensory profiles were analyzed both by sensory and
analytical methods, in order to develop the correlation model.
Subsequently, in a second part, the model was tested on a set of
8 different coffees (validation set).

Sensory Evaluation. Ten trained panelists evaluated each
coffee twice by applying Quantitative Descriptive Analysis.17 Nine
aroma and two taste attributes were scored on a scale ranging
from 0 (not intense) to 10 (very intense) for each product by
monadic sensory evaluation. The statistical significance of each
sensory attribute was validated by processing an analysis of
variance (ANOVA). As the performance of each panelist was
confirmed prior to the sensory evaluation session, attribute means
(mean of all evaluations, including the repetitions, for one attribute
and one coffee) are used for further data treatment, Table 2. xpu

represents the matrix elements of the sensory raw data matrix X
for 11 coffees (p) and 11 sensory attributes (u). For standardization
of the sensory evaluation data between 0 and 1, the following
transformation was applied to X, Table 2B

where xpu ) mean value (all panelists) of the uth attribute of coffee
p, xu max ) max i)1,...11(xiu), xu min ) mini)1,...11(xiu).

The resulting matrix X′ describes primarily the quality of the
different coffees. In addition, it also includes information about
the intensity of each sample. Furthermore, it was observed that
the range of scale covered by panelists during the evaluation
changes when presenting very different coffees in terms of
intensity. Finally, it should be considered that the quality of the
coffees may strongly influence the evaluation of the differences
in overall intensity. A panelist very sensitive to bitterness will
evaluate a very bitter coffee as very intense too. Therefore,
attention has to be paid to the effect of diluting the same samples
(same quality but different intensity) and/or including coffees with
very different overall intensities (different quality and different
intensity). The same coffee diluted with water should show the
same quality by sensory evaluation but the intensities should be
lower.

In order to make sensory data more amendable to correlation
with instrumental data, information other than that on quality
differences should be selectively eliminated/reduced (the same
holds for instrumental data).

In psychophysics, there is ample empirical evidence that the
relationship between the magnitude of a sensory sensation and

(17) Stone, H.; Sidel, J.; Oliver, S.; Woosley, A.; Singleton, R. C. Food Technol.
1974, 28, 24-34.

Table 1. List of Compounds Representing 95% of the Individual Ion Trace Signals, the Compounds Were Identified
by GC/MS

X′pu ) (xpu - xu min)/(xu max - xu min) (1)
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the intensity of the physical stimulus is best represented by a
sigmoid curve. This relationship is expected to be equally valid
for the perceived aroma intensity vs aroma concentration. The

sigmoid relationship is characterized by three parts, Figure 2: (i)
The perceived intensity is zero for concentrations below the
perception threshold. (ii) The perceived intensity is almost

Table 2. Standardization and Normalization of the Instrumental and Sensory Data Including the Correlation of Both
Datasets, Only a Fraction of the Full Dataset Is Shown
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constant above a certain (high) concentration. The perception is
at saturation, and higher concentration does not lead to stronger
perception above the saturation point. Variation in the quality of
the perceived sensory note is yet possible with increasing
concentration above saturation. (iii) The perceived intensity
increases with concentration between these two limits, without
changes in the quality of the perceived sensory note.

For the intermediate part, Fechner (1877) law states that the
intensity of a sensation increases as the logarithm of the stimulus:

This basic law was adapted by many psychophysicists. Stevens,18

for example, proposed a power law, but the general concept of
the sigmoid relationship is well accepted.

This concept is nevertheless only valid when evaluating a single
stimulus at different concentrations (e.g., a coffee extracted at 25
mL, with or without addition of water). When analyzing different

stimuli (different coffees), the quality of perception is changing
and it is no longer possible to evaluate their intensity on a single
(same) scale.

The challenge for extending this basic concept of psychophys-
ics is twofold: (i) find a way to rate the perception of different
coffees on a common scale system (refers to sensory) and (ii)
separate composition and concentration (refers to sensory and
analytical).

Therefore, a multivariate scale system was applied for sensory
evaluation to compare mean profiles (mean from repetitions of a
product by one panelist, is considered here as the raw sensory
data) for (i) any coffee with any other coffee (quality) and (ii)
any concentration of a coffee with any other concentration of the
same coffee (quantity).

Referring to the matrix X′, it is impossible to separate quality
data from differences in quantity using this dataset. A sensory
panelist is able to evaluate the intensity of different coffees if the
coffee product remains the same and, for example, only the
dilution is changed. As soon as the coffee is very different in
quality it is hardly possible to evaluate its intensity consistently
because there are individual differences as to which
sensory attribute will be the reason for the perceived intensity.
One panelist may evaluate a bitter coffee as intense, while another
panelist might be more influenced by the acidity. We have
therefore to conclude that the overall intensity (quantity) of a
product can hardly be separated from the profile (quality) in
sensory profiling.

Here we have to refer to the instrumental data set which
contains quantity/ intensity information. As an approximation, we
take the integrated intensity over a PTR-MS ion trace spectrum
for a given product, as a measure of the overall intensity (quantity)
of the specific espresso. Consequently, both instrumental and
sensory data are standardized to the quantity information calcu-
lated from the instrumental data. This is one key element that

Figure 2. Schematic presentation of the sigmoid relationship
between perceived aroma intensity and aroma concentration (Fech-
ner, 1877).

Figure 3. Results of the model development showing the determined sensory profiles and predicted sensory profiles. The data was standardized
to the minimum and maximum score of the sensory evaluation for each attribute (X′).

perception ∼ k log(concentration) “Fechner’s law”
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allows correlating sensory quality with instrumental quality data,
once the impact of the overall intensity of the products has been
filtered out in a consistent way from both data sets.

Instrumental Considerations. The headspace of 11 different
espresso coffees (training set) was monitored on-line by PTR-MS.
The intensity maxima in headspace concentrations were reached
2 min after connecting the temperature-controlled sample cell to
the analytic setup. At this point 16 ion traces were quantified for
each coffee (see Table 1).

Similar to the sensory profiles where each attribute is evaluated
by using the same range of scale, the instrumental data have to
be standardized before extracting the information on quantity
differences. mpk represents the matrix elements of instrumental
raw data matrix M for 11 coffees (p) and 16 ion traces (k). If the
analytical data consisted of a quantification of individual chemical
compounds, their individual sensory thresholds could be used for
standardizing the data. With the obtained ion-trace profiles, no
such information is available since each ion-trace may represent
more than one compound (Table 1) and the compound’s contribu-
tion individually changes among the coffees. Thus, standardizing
to the sum of the 16 ion-traces (sumi)1...16(mpi)) would result in a
relative overestimation of very intense aroma compounds related
to a specific ion trace. On the contrary, relatively low concentrated
aroma compounds would contribute to a negligible extent.
Therefore, it is proposed to give the same weight to each ion-
trace, independently of its absolute abundance. One way to achieve
this is standardizing all ion trace intensities to the mean value
across the different coffees as shown in Table 2A:

where mik is the value of the kth ion trace of coffee i.

Further mathematical transformation of the ratios between
abundances of a given ion trace has the advantage that it is in-
line with Fechner’s law.

On the basis of the standardized matrix M′, the overall intensity
(quantity) of each sample can be expressed. A more intense coffee
will generally contain higher intensities for all recorded ion-traces.
Therefore, the data can either be standardized by using the sum
of all ion-trace intensities of a single coffee or by using the mean
value. Tests showed better results in correlation when using the
mean value of all ion-trace intensities resulting in a C vector with

where m′pk is the value of the kth standardized ion trace of coffee
p.

Linking Sensory and Instrumental Data. With the use of
the C vector (eq 3), both the instrumental and sensory data can
be transformed to contain only information reflecting the quality
differences between the coffees.

where M′ is the standardized instrumental data set matrix with
its elements m′pk

where x′pu is the standardized sensory data set.
With normalization of the transformed sensory and analytical

data sets, they can now be correlated (M′′′ and X′′′ from Table
2). The matrix of scores is obtained by applying a PCA (principal
components analysis) to the transformed analytical data. To predict
the sensory profile based on the analytical data, the obtained
matrix of scores of the transformed analytical data replaces the(18) Stevens, S. S. Psychol. Rev. 1957, 64, 153-81.

Figure 4. Validation of the model using eight coffees (espressos A, B, C, nos. 4′, 6′, 8′, 9′, and 10′). Espresso nos. 4′, 6′, 8′, 9′, and 10′ are
the same as used for the training set but harvested 2 years later. The data was standardized to the minimum and maximum score of the
sensory evaluation for each attribute (X′).

m′pk ) mpk/meani)1...11(mik) (2)

cp ) meank)1...16(m′pk) (3)

m′′pk ) m′pk/cp (4)

x′′pu ) x′pu/cp (5)
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matrix of scores of the PCA applied to the transformed sensory
data. Table 2C shows the complete calculation, step by step. In
general, a fairly good prediction of the sensory profile was
achieved based on analytical data, i.e., the general sensory profile
is well reflected by the model using the first two principal
components (Figure 3). As an example, the sensory and instru-
mental data of espressos no. 1 and no. 10 resulted in an almost
complete overlap, reflecting well the sensory difference between
these coffees described as flowery, winey, citrus, and acid and
coffee, bitter, cocoa, roasted, and woody, respectively. In some
cases, the intensity of certain sensory attributes is deviating from
those obtained by sensory evaluation (e.g., espresso no. 11);
however, the trends are still well represented by the model. The
accuracy of the model can be determined by comparing the
difference between predicted and evaluated sensory data. It was
observed that for each sensory attribute and each coffee, the
difference is smaller than the LSD (least-squares deviation)
obtained from the sensory evaluation data (applying ANOVA).

After having established the predictive model, on the basis of
11 espresso coffees, it was validated on a set of 8 additional coffees.

VALIDATING THE MODEL
Eight coffees were used for the validation of the predictive

model. Five of them were the same as used in the training set,
but the beans were harvested 2 years later. Three were new
espresso coffees, extracted with 110 mL of water (“Lungo”-type),
in contrast to all other espresso samples that were extracted with
25 mL of water (“Ristretto”-type). The application of the model to
the validation set resulted in an overall median absolute difference
between observed and predicted of 0.11 on the 0-1 scale, which
is much smaller than the LSD of all attributes. The sensory
evaluation of the validation samples was performed using a
reduced set of eight sensory attributes because of the missing
significance of the three remaining attributes (Figure 4). Again,
there is a good correlation between the sensory profiles with those
obtained by instrumental analyses. The espresso nos. 4′, 6′, 8′,
9′, and 10′ showed profiles similar to those harvested 2 years
earlier (espresso nos. 4, 6, 8, 9, 10, Figure 3), even though a
reduced set of sensory attributes were used. Moreover, the
sensory profiles of the new coffees (espresso A-C) could also be
predicted based on PTR-MS data, thus validating the model,
despite the fact that these samples were prepared at higher
dilution (“Lungo”-type). These results indicate that the predictive
model is robust enough to withstand variations derived from
harvest, instrumental changes, and preparation/extraction.

CONCLUSIONS
The coffee extraction and all measurements were performed

under well-defined conditions to achieve high reproducibility of
data. A requirement of this study was to perform coffee extraction,
sensorial mapping, and analytical measurements under conditions
that are close to the real consumption event. Nevertheless, there
is a difference between the sensory evaluation of trained panelists
and the description given by an average coffee consumer.19,20 For
this study it was important to generate a complete evaluation of
the sensory experience rather than a description using a reduced

set of attributes such as overall aroma, roasty aroma, processy
aroma, body, persistency, etc.

The standardization procedure described in the results chapter
(eq 1) is not the only possibility to generate a common sensory
evaluation data set using a number of individual sensory evalua-
tions. Another possibility would be to normalize the individual
evaluation of each panelist and attribute before performing the
same standardization. A panelist who is not able to describe the
difference for a specific attribute within the presented coffees
might evaluate all samples around the same point within the scale.
By normalization of such a dataset, it would have the same
importance as a dataset of a panelist well discriminating the
samples using the specific attribute; thus the result would be
biased. In other words, if panelists are using the range of scale in
a very different way, e.g., one using only the upper part but
evaluating the differences in the right order and another one using
the complete range of scale, a mean value of both might generate
incoherent results. Though there are several approaches to data
normalization, it turned out that using the attribute means as
shown in this work allows for obtaining the most reproducible
results.

Performing correlations between headspace data (volatiles
only) and sensory data implies the challenge of modeling taste
attributes such as bitter and acid. However, because of the fact
that during the roasting process both volatiles and nonvolatiles
are formed by similar reaction pathways, it is not surprising to
obtain correlations with taste attributes represented by nonvola-
tiles on the basis of a volatiles pattern. Therefore, taste attributes
can indeed be predicted by using data of volatiles only.21,22

The espresso coffees selected for this study were blended
mainly from different Arabica varieties with some Robusta (5%
Robusta in average). Blending Arabica with Robusta varieties has
shown to add complexity to the model and adds some uncertainty
in the prediction of the sensory profiles, but the model still shows
reliable results. Models obtained with pure Robusta and Arabica
samples separately (data not shown here) show results which are
more accurate. Nevertheless, predicting the sensory profile of a
new coffee depends very much on the diversity of samples used
for constructing the model. The broader the sensory and analytical
space of the samples included in developing the model, the more
robust the model. We can further deduce that the sensory
attributes citrus, flowery, acid, bitter, and winey are best discrimi-
nating the products and at the same time they were predicted
most accurately by the instrumental data.

In conclusion, this study has resulted in a first robust model
to predict sensory profiles of coffee from analytical data. Further-
more, as the model is based on fast on-line PTR-MS analysis, a
prediction of a sensory profile can be accomplished within
minutes. Relative to current methods of aroma profile analysis,
this opens the possibility of high throughput studies.
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